
1

2

I implemented the system I’m about to describe about a year and a half

ago. As with most things in a game engine, it ended up getting used in

many ways I never imagined. This talk is about the problem I was trying

to solve, what I did, why you should care, and how it all turned out.

3

Oh wait, before I forget, please put away annoying little electronic

beeping things that play TV theme songs and all that…

4

First let’s look closer at the title I chose for this talk and get some
terminology out of the way.

Data-Driven

This can mean many things, but for me it means that you don’t need to
involve an engineer when you want to change something. Engineers
are really slow and it often seems like they take forever to get anything
done. This of course drives designers and artists crazy. A non-data-
driven system would have the names of animations to run for a monster
hard-coded into the C++ files, requiring an engineer’s time and a new
build to change. A data-driven system would store all of this in a data
file somewhere and you could even write a tool to keep it updated.

When I wrote the above, I realized that I was thinking in 1995 terms.
Today we’ve gone much further than that, to the point that the code
doesn’t even know what a monster is, and the only reason it knows to
run animations is because some AI script with its own agenda is
sending a request to do so. In many modern game engines you can
make radical changes to the system without ever speaking to an
engineer. This permits rapid prototyping and is a wonderful thing, if
managed properly. The line between engine and content is always
moving, maybe one day we’ll engineer ourselves out of existence.

5

Game Object

A Game Object or what we at GPG call a ‘Go’ is a piece of logical

interactive content that the player can do something with. The line is

blurred of course depending on the engine. In Dungeon Siege, some

examples of Go’s are trees, bushes, monsters, levers, waypoint

markers, and doors. The heroes and each item in their inventory (like

swords, rings, armor, and the inevitable potions) are Go’s. Many Go’s

you never see, such as triggers, elevator movers, sound emitters, etc.

Go’s are self-contained logic that can perform many tasks, or you might

say they have many abilities. They might render themselves, find paths,

follow paths, think for a bit, say something, ready and shoot an arrow

(which is itself a Go), or self-destruct, spawning an effect on the way

out. There’s nothing special about Go’s, every game has something like

this, of course, but each game does it differently.

6

The Game Object System is simply the system that constructs and

manages Go’s for the game. It’s responsible for mapping ID’s to object

pointers, creating and destroying Go’s, managing external requests to

use Go’s, and routing messages. In Dungeon Siege this is built from a

lot of systems, but for the purposes of this talk we’ll be covering the

GoDb (Go database) and the ContentDb (static content database).

Games today have crazy amounts of content, and I’m not talking about

movies, which are easy (i.e. each movie is a single piece of content, no

problem!). And it’s only getting worse (or better, depending on if you’re a

glass-is-half-full type of person).

So let’s get into the main topic here. Say you’re an engineer set out to

create a new Game Object System from scratch, and you’re going to

“do it right the first time”. You talk to your designer and say “what kind of

content are we going to have in this game?” They respond with “oh lots

of stuff, trees, and birds, and bushes, and keys and locks and

…<trailing off>” and your eyes glaze over as you start thinking of fancy

C++ ways to solve the problem. The object oriented programming

sages tell you to try to determine Is-A relationships and abstract

functionality and all that other fun stuff. You go to the book store and buy a

C++ book just to be sure, and it tells you to fire up your $5000 UML editor with

one of the classic examples (next slide):

6

7

Here we have all our game types specified as classes in a nice

hierarchy. I had to keep this diagram simple to fit on this slide but

imagine all the fun virtual functions you’d see here, like DrawSelf(),

Think(), and HandleMessage().

8

Fancier books recommend something like this.

Here, we try to decompose functionality along capability lines. Each

“mixin” class adds functionality, for example the “chewable” class would

add knowledge of how a space monster would be able to chew up the

object (maybe play some effects, add info to the leaderboard, etc.).

Again, no space on the slide, but expect that there would be hooks

(pure virtual functions) like OnDraw(), OnGetBoundingBox(), and

whatever else.

9

There are probably hundreds of ways you could decompose your

systems and come up with a set of classes (I just showed a couple

simple ones), and eventually, all of them are wrong. This isn’t to say

that they won’t work, but games are constantly changing, constantly

invalidating your carefully planned designs. How many post-mortems

have you read about designs that were too ambitious, or massive

changes mid-stream, or when marketing demanded some silly thing, or

something needed to get added because somebody thought it might

make the game more competitive...

So you hand off your new Game Object System and go work on other

things. Then one day your designer says that they want a new type of

“alien” asteroid that acts just like a heat seeking missile, except it’s still

an asteroid. Or they want to get rid of this whole spaceship concept and

go underwater instead. Or they want those trees to sway back and forth

in the wind…

10

The closer your code gets to that line between engine and content, the

fuzzier the requirements and the more likely that your work will regularly

need to get refactored. You could resist change like this, but that will

just result in designers hacking around things, creating even worse

problems. Suffice it to say that it’s just easier to try to handle this

change as a fact of normal game development. And how does that

change get handled? In software engineering we learn to take the

things that vary and abstract them. In other words, find the parts of the

system that are likely to change and make them flexible. Traditional

wisdom says to do this through Is-A relationships via the class tree.

Unfortunately, the class tree resists change.

11

This can go wrong a number of ways, and all of them are caused by programmer frustration. Here are a
few:

Class merging (sometimes called hoisting)

Over time, many of these little classes end up getting merged into larger monolithic classes. It’s just easier
to have little bools inside the base class that say “turn this feature on”. Many times the bools are “turn this
feature off”, because you figure out that 90% of your derived classes are duplicating the same code, and
it’s easier to just hoist the functionality out of them and into the base, then let it be configured with a bool.
Sure you could create a new derived class that contains that functionality, but we’ve got an n-dimensional
array of features here, one for each type, and there’s no way to turn it all into a nice tree. The model you
choose to follow for your hierarchy design will end up being a prison. So to deal with this, you’ll probably
end up turning that n-dimensional array into a list of configuration variables that sit in the base. And this
isn’t necessarily a bad thing, though it usually is. Might as well have a single class with a pile of
configuration variables and a bunch of switch statements, right?

Virtual override madness

The point of deriving is to specialize behavior. When you have derivatives of derivatives, you end up with
potential ordering problems in your virtual function calls. A particular class overrides an OnDraw() method.
It knows that it must draw its new stuff after the base class’s stuff, so it calls the base version first, then
itself. A new derivative of this class wants to draw itself in between the base and its base. This is
impossible, so you end up .

Increasing resistance to change

The more complex the system gets, the more paranoid people get about adding new things to it. If it’s a flat
hierarchy, no big deal, just copy paste something else and adapt it. But it will have depth to it, and so when
your junior guy wants to add some new gizmo to support a feature he’s working on, he freaks out! Where
can it be inserted without messing everything up? Which virtual functions must you call and when and
how? Most likely what they’ll do is add some more bools and put an if/else to stick in their new feature.
Eventually you run into distributed state management problems, nasty.

Doc rot

It’s hard enough to get programmers to document their own code properly, much less tell the rest of the
team how to use it. In your data-driven system, somewhere there is some kind of loader function – code
that maps data from the resource store onto runtime objects. The names of the fields it reads in, their

types, the allowable ranges, etc. are known as the “schema” of the game objects. Well since this schema is hard-
coded into your C++ app, it’s up to the programmer to carefully document all of this separately, and keep it up to date
as it changes. Just like the type problem, with code this close to the content, something this dynamic is going to take
resources that probably aren’t there, and so documentation for the schema will end up limited or be subject to “doc
rot”, and become more and more incorrect over time. This of course drives your scripters crazy.

Editor out of sync

This is a similar problem to doc rot. Whatever tool you have built to place objects in a level needs to know the game
schema in order to know what values it can let the designers change.

11

12

Let’s step back a bit and look at what we’re working on here. It’s a

database. Why are we spending all this time, constructing classes and

hierarchies and managing cpp files and h files and #include nightmares

and forward declarations and ordering dependencies on virtual

functions and slow compile times and custom archive functions and all

of this mess, when all we’re really doing is hard-coding a database?

Sure our game is data-driven in that we’re reading in property values

and such from disk in order to initialize our game objects, but in order to

cope with the ever-changing needs of the game, the structure of the

objects themselves is what must be data-driven now. Let’s take the type

structure, the hierarchy, and put it into data.

So if we’re moving type definition out of the engine and into data, what

should all of this look like? And now we’re getting to the real point of this

talk. The easiest way for me to describe this is to just talk about the

system I implemented for Dungeon Siege – first implementation, then

usage (next slide).

13

Here’s a quick overview of the implementation. It’s a simple component

system, where each component encapsulates a chunk of game logic,

and the data specifies how to assemble these components into Go’s

and what values they should be initialized with. If you don’t like the word

“component”, try “plugin” instead, same thing.

For example, the [placement] component tracks the Go’s location in the

world, the [body] component is responsible for animation-related tasks,

the [mind] component handles sensors and performing jobs, and the

[inventory] component manages equipment and inventory items. These

components are sort of like the mixin classes I mentioned earlier.

14

There are two separate sets of classes involved here. One is for the

static content and represents the schema and prototypes in the

database. The other is for dynamic content and makes up the game

objects for the session. I’ll be covering these two families of classes

next.

15

Let’s look at the dynamic content first, which includes the Go’s and components. I put

thicker borders on the key classes in here. I also didn’t show the GoDb because it’s

just a container for Go’s.

A Go is just a class that contains a list of components. You can query for a component

by name, and it will return a GoComponent* that you can cast to the real type.

Components are unique within a Go, meaning that there can only be one of each kind.

This is limitation I specifically added to keep the system simple but I plan to remove it

for the next game as it turns out we needed to permit arrays and nesting in some

cases. For performance, the most commonly used components get a cached pointer

so we don’t have to look them up each time (there are Get() functions for each of

those, like GetBody(), GetInventory(), etc.). The Go class does not have derivatives.

Nearly all logic is done in the components so the Go does little more than component

management, maintain the parent/child tree, and a few other random things. The game

runs almost completely on the logic built into the Go components.

GoComponent is our other main dynamic content class, and it’s an abstract base

class. It does little more than provide the common interface through which the system

components communicate. It’s filled with event handling methods meant to be

overridden by derivatives, such as HandleMessage, CommitCreation, LinkParent, and

Xfer (for persistence) and a few helpers. Most systems in the game that don’t care

about game code deal with components through virtual methods at the GoComponent

level.

16

When I was designing this system it became immediately obvious that

we wanted to build components out of Skrit (Skrit is just the name of my

scripting language). High performance components that are used

everywhere should be written in optimized C++ code, and everything

else would be Skrit. Why do it like this? I wanted prototyping new ideas

to be as simple as creating a new Skrit file and plugging it into the data

somewhere. And because it’s my compiler rather than Visual C++ I

could do it all on the fly without having to restart the game (much less

get a new build from an overworked engineer!).

17

In practice this was pretty simple to implement. Just create a custom

derivative of GoComponent called GoSkritComponent that owns a Skrit

object, overrides all those virtual functions, and passes them along as

events to the Skrit. For all practical purposes, the game and the editor

don’t know the difference between a C++ component and a Skrit

component. And certainly none of the designers really had any idea

either. They just see a property sheet in the editor.

It worked out pretty well. We ended up with about 21 components that

we thought needed to be written in C++ (show next slide…)

18

(Mention a few of these).

And the rest, nearly 150 of them… (show next slide)

19

…ended up in Skrit. (“You probably can’t see these well, but…” and

mention a few of them).

Looking back, we probably should have done even fewer in C++, but

our content engineer didn’t come on board until we had already built a

number of things in C++ so we just left most of them. We did end up

converting a few C++ systems, such as our spellcasting, to use this

Skrit component system though because it was so much easier.

20

21

(Template is a ‘pattern’ in the conventional meaning, not the C++

meaning.)

There is a 1:1 correspondence between a Go and its GoDataTemplate,

and a Go’s components and the GoDataTemplate’s

GoDataComponents. And within the GoDataComponents, the fields

map 1:1 with the GoComponent public properties.

22

23

24

Talk about how it’s important to have a public schema like this.

25

26

27

28

Implicit in this template is the other components that are inherited from

the base template. There are many that you don’t see here like physics

(yes, chickens can simulate) and actor.

29

30

31

32

33

34

35

36

37

Recommendation: have a special part of the tree (make it compile out in

retail builds) that is just for test objects. They’ll pollute the global

namespace so prefix the names with something like test_ or dev_. Then

you can let people work in that branch of the tree doing whatever they

like for testing purposes without worrying about it screwing up the main

game. DS ended up with nearly 150 of these ‘cause whatever, they’re

just for testing…

38

39

40

41

A paper is not available, unfortunately shipping Dungeon Siege took up

all my time. 

	Slide 1: A Data-Driven Game Object System
	Slide 2: Introduction
	Slide 3: Cell Phones?
	Slide 4: Definitions
	Slide 5: Definitions (Cont.)
	Slide 6: Definitions (Cont.)
	Slide 7: Example Class Tree Vintage
	Slide 8: Example Class Tree Newfangled
	Slide 9: It Won’t Work
	Slide 10: Just Give In To Change
	Slide 11: C++: Not Flexible Enough
	Slide 12: Reexamine The Problem
	Slide 13: Solution: Component System
	Slide 14: Two-Part Implementation
	Slide 15: Dynamic Content Layout
	Slide 16: Extension: Skrit (DS Scripting Language)
	Slide 17: Extension: Skrit (Cont.)
	Slide 18: 21 C++ Components
	Slide 19: 148 Skrit components
	Slide 20: Alert! Before Moving On
	Slide 21: Static Content Layout (Code)
	Slide 22: Schema Layout (Code)
	Slide 23: Compile ContentDb Part 1: Build Schema
	Slide 24: C++ Component Schema (Data)
	Slide 25: Skrit Component Schema (Data) (Concept adapted from UnrealScript)
	Slide 26: Compile ContentDb Part 2: Build Templates
	Slide 27: Template Forest (Data)
	Slide 28: Template Specification (Data)
	Slide 29: Compile ContentDb Part 3: Compile Templates
	Slide 30: Compile ContentDb Special notes
	Slide 31: Editor Integration
	Slide 32: Editor Integration (Cont.)
	Slide 33: Instance Specification (Data)
	Slide 34: Loading Objects
	Slide 35: New C++ Components
	Slide 36: New Skrit Components
	Slide 37: Managing the Template Tree
	Slide 38: Advantages I Forgot To Mention
	Slide 39: Some Pitfalls
	Slide 40: Future
	Slide 41: Contact Info

